- 四(三苯基膦)钯是怎样生产的?
- 四三苯基磷钯溶于什么有机溶剂?
- 双三苯基磷二氯化钯是什么,有什么用途啊?
- 【求助】四三苯基磷钯变质了是什么颜色的啊?
- suzuki交叉偶联反应通式?
- si基gan功率器件工艺流程?
- 三元催化自己换其它车的芯可以吗?
- c60是什么?
四(三苯基膦)钯是怎样生产的?
合成过程:称量60.0gPdCl2,加入5L三口反应瓶中,加入1500mLDMF,过量的三苯基膦,加热至反应体系完全溶解,撤去热源,快速滴加水合肼,冷却至室温,析出黄色沉淀,过滤,用乙醇洗涤h,产品充氮气密封冷藏保存,得产品1109g,产率95.6%。
四三苯基磷钯溶于什么有机溶剂?
黄褐色粉末,空气中易变色,应在惰性气体中密封储存,溶于苯、乙醇和氯仿中,四三苯基膦钯主要用于硅氢化,异构化,羰基化氧化和C-C键的形成。
Negishi 偶联、Suzuki 偶联、Stille偶联以及 Sonogashira 偶联反应催化剂;Buchwald-Hartwig胺化反应催化剂;乙烯基碘化物羰基化反应催化剂;芳基溴化物还原反应催化剂;碳-锡成键反应催化剂。
双三苯基磷二氯化钯是什么,有什么用途啊?
基本信息:
中文名称 双三苯基磷二氯化钯
中文别名 双(三苯基膦)合氯化钯;二(三苯基膦)二氯化钯;二氯化双(三苯基膦)钯(II);反-二(三苯基膦)二氯化钯(II);反-二氯化双(三苯基膦基)钯(Ⅱ);二(三苯基膦)二氯化钯(II);双三苯基;二(三苯基膦)氯化钯;双(三苯基膦)二氯化钯(II);
物化性质:
外观性状黄色晶体
闪点181.7oC
熔点260°C
沸点360oC at 760 mmHg
双三苯基磷二氯化钯的用途:
1.作为催化剂,用于Suzuki、Kumada、Negishi等偶联反应中
2.卤化物的欲基化催化剂。如从卤代烷制醛、羧酸、酸胺等。也能使卤代烷与乙炔反应成碳链增长的炔化合物。
3.用途卤代烷的羰氧烷基化,芳基卤化物、乙烯基卤化物的取代反应。合成醛、酰胺和内酯等
【求助】四三苯基磷钯变质了是什么颜色的啊?
是不是你反应过程中没有充好惰性气体啊?shadanoo(站内联系TA)应该还可以用。我有过同样经历,我自己制备的,用惰气保护的很好并放在冰箱里,但还是变黑了,但是其反应活性依然非常高!huangchk(站内联系TA)避光,低温,惰性气体但是变黑了一般都没问题。试试看再说rava(站内联系TA)新鲜的四三苯基瞵钯是浅黄色的,氧化后颜色变深,对于偶联反应影响很大。用乙醇重结晶,或者简单地用乙醇洗掉氧化物,就可看到浅黄色固体重现。。。zwj6800(站内联系TA)变黑了最好别用zhaoqy03(站内联系TA)如果原料不易得到的话,就不要用了。极易变黑亲核取代(站内联系TA)普通的偶联反应没有问题,如果不放心,可以重结晶chemtetralone(站内联系TA)黑了可以用,也可以采用下列方法处理,颜色依然能够变成金黄色,活性还可以。取变黑的催化剂,加入乙醚/无水乙醇=1/5左右洗涤,倾去上层液体,如此反复洗涤3遍,最后一遍用乙醚洗涤,氮气保护抽滤,抽滤后的黄色固体转移到梨型瓶中,真空抽干,惰性气体保护即可。这样处理好保存半年也不会变颜色。
suzuki交叉偶联反应通式?
Suzuki 反应(铃木反应),也称作 Suzuki 偶联反应、Suzuki-Miyaura反
应(铃木一宫浦反应),是一个较新的有机偶联反应,是在钯配合物催化下,
芳基或烯基的硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。
通式:
R{-BY2+Rz-X钯催化剂碱R-R2
铃木反应-概述
Suzuki 反应对官能团的耐受性非常好,反应物可以带着-CHO、-COCH3、-
COOC2H5、-OCH3、-CN、-NO2、F 等官能团进行反应而不受影响。反应有选
择性,不同卤素、以及不同位置的相同卤素进行反应的活性可能有差别,三氟
甲礦酸酯、重氮盐、碘鎵盐或芳基铳盐和芳基硼酸也可以进行反应,活性顺序
如下:
R2-1>R2-OTf> R2-Br>> R2-CI【另一个底物一般是芳基硼酸,
由芳基锂或格氏试剂与烷基硼酸酯反应制备。这些化合物对空气和水蒸气比较
稳定,容易储存。Suzuki 反应靠一个四配位的钯催化剂催化,广泛使用的催化
剂为四(三苯基膦)钯(0),其他的配体还有:AsPh3、n-Bu3P、(MeO)3P,以及双
齿配体 Ph2P(CH2)2PPh2(dppe)、Ph2P(CH2)3PPh2(dppp)等。
Suzuki 反应
中的碱也有很多选择,最常用的是碳酸钠。碱金属碳酸盐中,活性顺序为:
Cs2CO3> K2CO3 >Na2CO3>LizCO3
而且,加入氟离子(F-)会与芳基
硼酸形成氟硼酸盐负离子,可以促进硼酸盐中间体与钯中心的反应。因此,氟
化四丁基铵、氟化铯、氟化钾等化合物都会使反应速率加快,甚至可以代替反
应中使用的碱。
si基gan功率器件工艺流程?
清洗
集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水;且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。
在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即采用无机酸将其氧化去除,最后用超纯水进行清洗,工具的清洗基本采用硅片清洗同样的方法2、热氧化,热氧化是在800~1250℃高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。
2、热氧化
热氧化是在800~1250℃高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为:Si + O2 → SiO2
3、扩散
扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B2H6)作为N-源和磷烷(PH3)作为P+源。工艺生产过程中通常分为沉积源和驱赶两步。
4、离子注入
离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。
5、光刻
光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶和未被光照的光刻胶将分别溶于显影液和不溶于显影液。
6、湿法腐蚀和等离子刻蚀
通过光刻显影后,光刻胶下面的材料要被选择性地去除,使用的方法就是湿法腐蚀或干法刻蚀。湿法腐蚀或干法刻蚀后,要去除上面的光刻胶。
反应的方法对基材腐蚀的过程,去除不同的物质使用不同的材料。对不同的对象,典型使用的腐蚀材料为:
腐蚀硅(Si) —— 使用氢氟酸加硝酸(HF + HNO3)
腐蚀二氧化硅(SiO2) —— 使用氢氟酸(HF)
腐蚀氮化硅(Si3N4) —— 使用热磷酸(热H3PO4)
干法刻蚀是在等离子气氛中选择性腐蚀基材的过程,刻蚀气氛通常含有F等离子体或碳等离子体,因此刻蚀气体通常使用CF4类的气体。
7、化学气相沉积(CVD)
CVD被使用来在硅片上沉积氧化硅、氮化硅和多晶硅等半导体器件材料,是在300~900℃的温度下通过化学反应产生以上物质的过程。典型的化学反应为:
SiH4 + O2 → SiO2 + 2 H2O
生长过程中掺磷时加磷烷的反应为:
4 PH3 + 5 O2 → 2 P2O5 + 6 H2
SiH2Cl2 +2 N2O → SiO2 + 2 N2 + 2 HCl
化学气相沉积根据CVD反应的气氛和气压可分为低压CVD(LPCVD)、常压CVD(APCVD)和离子增强CVD(PECVD)等。
8、金属沉积
在硅基片上沉积金属以作为电路的内引线的方法有蒸发、溅射、CVD等,亚微米集成电路生产通常采用溅射的方法。铝是常用的金属沉积材料,其它的材料包括金、钛、钼、钨、钛钨合金、钯、铜也在一些器件上采用。
9、化学机械抛光(CMP)
CMP是类似机械抛光的一种抛光方式,一般用于具有三层或更多层金属的集成电路芯片制造生产。在已形成图案的芯片上进行化学机械抛光,使之形成平整平面,以减轻多层结构造成的严重不平的表面形态,满足光刻时对焦深的要求。
10、背面减薄(BG)
在芯片的生产过程中,芯片太薄不利于芯片生产。通常在芯片生产结束后,用细砂轮将芯片的背面进行研削,使芯片减至一定的厚度。
三元催化自己换其它车的芯可以吗?
三元催化只换芯不可以。由于油质等问题,三元催化器经常会发生堵塞等,从而使得汽车油耗增加、动力下降、尾气超标。三元催化器的堵塞内在原因是因为其贵金属元素对于硫、磷、铅一氧化碳等有一定的吸附作用,聚合形成胶质物,造成堵塞。外在原因是因为汽油的油质差,胶质物会比较多,同时机油中含有的含硫、磷的抗氧化剂以及燃油燃烧不充分遗留下的杂质,也会容易造成三元催化器的堵塞。
三元催化三元催化,是指将汽车尾气排出的CO、HC和NOx等有害气体通过氧化和还原作用转变为无害的二氧化碳、水和氮气的催化。主要是用三元催化器,三元催化器的载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属和稀土涂层。是安装在汽车排气系统中最重要的机外净化装置。
c60是什么?
C60分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯。
C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形。处于顶点的碳原子与相邻顶点的碳原子各用sp2杂化轨道重叠形成σ键,每个碳原子的三个σ键分别为一个五边形的边和两个六边形的边。碳原子的三个σ键不是共平面的,键角约为108°或120°,因此整个分子为球状。每个碳原子用剩下的一个p轨道互相重叠形成一个含60个π电子的闭壳层电子结构,因此在近似球形的笼内和笼外都围绕着π电子云。分子轨道计算表明,足球烯具有较大的离域能。
除了超导领域以外,C60在以下几个方面也具有广泛的应用前景。
①气体的贮存
利用C60独特的分子结构,可以将C60用作比金属及其合金更为有效和新型的吸氢材料。每一个C60分子中存在着30个碳碳双键,因此,把C60分子中的双键打开便能吸收氢气。现在已知的C60的稳定的氢化物有C60H24、C60H36和C60H48。
在控制温度和压力的条件下,可以简单地用C60和氢气制成C60的氢化物,它在常温下非常稳定,而在80 ℃~215 ℃时,C60的氢化物便释放出氢气,留下纯的C60,它可以被100%地回收,并被用来重新制备C60的氢化物。与金属或其合金的贮氢材料相比,用C60贮存氢气具有价格较低的优点,而且C60比金属及其合金要轻,因此,相同质量的材料,C60所贮存的氢气比金属或其合金要多。
C60不但可以贮存氢气,还可以用来贮存氧气。与高压钢瓶贮氧相比,高压钢瓶的压力为3.9×106 Pa,属于高压贮氧法,而C60贮氧的压力只有2.3×105 Pa,属于低压贮氧法。利用C60在低压下大量贮存氧气对于医疗部门、军事部门乃至商业部门都会有很多用途。
②有感觉功能的传感器
由于用C60薄膜做基质材料可以制成手指状组合型的电容器,用它来制成的化学传感器具有比传统的传感器尺寸小、简单、可再生和价格低等优点,可能成为传感器中颇具吸引力的一种候选产品。
③增强金属
提高金属材料的强度可以通过合金化、塑性变形和热处理等手段,强化的途径之一是通过几何交互作用,例如将焦炭中的碳分散在金属中,碳与金属在晶格中相互交换位置,可以引起金属的塑性变形,碳与金属形成碳化物颗粒,都能使金属增强。
在增强金属材料方面,C60的作用将比焦炭中的碳更好,这是因为C60比碳的颗粒更小、活性更高,C60与金属作用产生的碳化物分散体的颗粒大小是0.7 nm,而碳与金属作用产生的碳化物分散体的颗粒大小为1 μm~5 μm,在增强金属的作用上有较大差别。
④新型催化剂
在发现C60以后,化学家们开始探讨C60用于催化剂的可能性。C60具有烯烃的电子结构,可以与过渡金属(如铂系金属和镍)形成一系列络合物。例如C60与铂、锇可以结合成{[(C2H5)3P]2Pt}C60和C60OsO4·(四特丁基吡啶)等配位化合物,它们有可能成为高效的催化剂。
日本丰桥科技大学的研究人员合成了具有高度催化活性的钯与C60的化合物C60Pd6。中国武汉大学的研究人员合成了Pt(PPh3)2C60(PPh3为三苯基膦),对于硅氢加成反应具有很高的催化活性。
⑤光学应用
具有独特微观结构的C60具有特殊的光学性质,其中令人感兴趣的光学性质之一是光限制性,即在增加入射光的强度时,C60会使光学材料的传输性能降低。
光限制性对于保护眼睛具有重要意义。以C60的光学限制性为基础,可研制出光限制产品,它只允许在敏化阈值以下(即对眼的危险阈值以下)的光通过,这样就起到了保护人眼免受强光损伤的作用。
⑥癌细胞的杀伤效应
C60经光激发后有很高的单线态氧的产率,而单线态氧与生物机体的生理生化功能、组织损伤、肿瘤以及光化治疗技术都有着重要关系。
当对C60的激发光强度达到4 000 lx时,癌细胞受单线态氧的作用已接近100%死亡,因此能有效地破坏癌细胞的质膜和细胞内的线粒体中质网和核膜等重要的癌细胞结构,从而导致癌细胞的损伤乃至死亡。
还有的研究指出,可以将肿瘤细胞的抗体附着在C60分子上,然后将带有抗体的C60分子引向肿瘤,也可以达到杀伤肿瘤细胞的目的。
⑦其他医疗功能
C60的衍生物具有抑制人体免疫缺损蛋白酶的活性的功能。人体免疫缺损蛋白酶是一种导致艾滋病的病毒,因此,C60的衍生物有可能在防治艾滋病的研究上发挥作用。
C60还适宜于在生物系统中充当自由基清除剂和水溶性抗氧剂,自由基是导致某些疾病甚至肿瘤的有害物质,C60可望能够降低患病者血液中自由基的浓度,还可抑制畸形的和患病细胞的生长。

评论